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Let h( I) = L,,;, I 11" I", h, > 0, and exp(xl1(t)) = L",o p"lx) I"in!. For IE qo, I],
the associated Bernstein-Sherrer operator of degree 11 is defined by B::/I x) =

P,~ I I% ~O Iik/n)( npdx) P" -d I - x) where P" = p"II). We characterize functions
11 for which B~; is a positive operator for all 11 ? O. Then we give a necessary and suf
ficient condition insuring the uniform convergence of B:: I to f When his a polyno
mial, we give an upper bound for the error 11./- B~:III ,. We also discuss the
behavior of B:: I when his a series with a finite or infinite radius of convergence.
1', 1995 Academic Press. Inc

I. INTRODUCTION AND DEFINITIONS

A sequence of polynomials s,,(x) E IP'" is called a Shej!£'r sequence [6] if
it is generated by an expansion of type

Jl';?O

where

til
g(t) exp(xh(t)) = I .1',,(.\)

n!
( 1.1 )

and

g(t) = I g" til
Il~O

h(t) = I h"t"
Il~l

( 1.2)

(1.3 )

With this Sheffer sequence is associated the sequence of polynomials
PIl(X) E IP'" of binomial type generated by

til
exp(xh(t)) = L p,,(x) -.

Il~O n!
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( 1.4)
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Thanks to the properties of the exponential function, it is easy to prove
that

and also

II (n)PII(X + y) = I k Pk(X) P" dY)
k=O

II (n)s,,(x + Y) = L k sdx) p,,-,,(y).
k~O

(1.5 )

(1.6 )

We define the Bernstein-Shelfer operator of degree n, associated with the
function h (or with the corresponding sequence p,,(x)) by

1 " (k)(n)B::f(x)=-I- L f - k pdx) p" ,,(I-x)
PIli ) ,,~O n

(1.7 )

for f E qo, 1], provided that PIll 1) #- 0 for all n ~ O. The classical Bernstein
operator corresponds to h(t) = t and p,,(x) = x" (see e.g., G. G. Lorentz
[4]). In this paper, we prove the following theorems in which we use the
notation ej ( x) = Xi, i ~ 0, for monomials. As shown in Section 2.1, it suffices
to consider the case hi> O.

THEOREM I. B:: is a positive operator on C[ 0, I] for all n ~ 0 (f and only
irh,,~Ofor all n~2.

THEOREM 2. Assume that h satiJ.fies the conditions of Theorem 1, then

(i) B:: is an isomorphism of !P" preserving the degree, i.e., B:: p E !Pk

whenever P E !P", 0 ~ k ~ n.

(ii) In addition, one has B::eo=eo, B::e\ =£'\ and B;:e~=e~+a,,(e\-e2)'

where a,,= I/n+((n-I)/n)(r" 2/P,,), p,,=p,,(l), r,,=r,,(I), the sequence
{r,,( x)} being generated by

t"
h"(t) exp(xh(t)) = L: r,,(x)-.

II ~ 0 nl

THEOREM 3. Assume that h sati4i"es the conditions of Theorem I, then

(i) B;:f converges uniformly to f E C[ 0, I], when n tend~ to infinity,
If and only i( the condition lim" ~ _ y (I"" _ ~ /p,,) = 0 holds.
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(ii) More spec(fically, when (r" 2Ip,,) = °(I/n), then there exists an
integer k;? 1 ./()r which hE IPk and we have:

III - B;;fIIf. ~ ( 1+ ~ fi) (I) (.I; fi)
where (IJ is the modulus 4 continuity off

This last result shows that the classical Bernstein operators (k = I) could
be considered as the best positive Bernstein~ShetTer operators associated
with functions h which are polynomials. It would be nice to characteri:::e the
class offunctions h, sati.lj~ving the conditions of Theorem 1, for which condi
tion (i) of Theorem 3 is also sati.!>jied, i.e., for which lim B~I= f for all
IE qo, I].

As shown in examples, this class is not reduced to polynomials and there
exist various generating functions of arbitrary convergence radii, for which
condition (i) is satisfied or not. We hope that this question is of interest for
the reader and we leave it open at this moment.

Here is an outline of the paper: in Section 2, we prove Theorems I
and 2. In Section 3, we prove Theorem 3. Finally, in Section 4, we give
examples of series h satisfying or not condition (i) of Theorem 3.

2. CHARACTERIZATION ANU PROPERTIES OF

POSITIVE BERNSTEIN-SHEFFER OPERATORS

2.1. Proof oj' Theorem I. First, we observe that if we set ii( t) = h( - t) =
- hit + h2 t 2 + h _, t' + ... then the operators B7, and B:: coincide. For,
exp(xh( -I)) = L,,;;>o p,,(x)( -t)"ln! = L,,;;>o p,,(x) t"ln! implies p,,(x) =

( -I)" p,,(x). Replacing in (1.7) gives immediately the desired result.

(1) The proof of the necessary condition is made by induction on the
degree. First, B I

; f exists itT hi¥-°since PI (x) = hi X. Now, consider the
expression

where /; = f( i12) for i = 0, 1, 2. Taking fa = h = 0, ./; = 1, we obtain

BU(x) = 2PI (x) PI (1 - x)/P2( I);? 0.

This implies P2( 1) > 0. Now, taking fo =.f; = ° and ./~ = 1, we obtain
P2(x)lp2(1);?O, therefore P2(X);?O. As P2(O)=O, we must have p~(O)=

2!h 2 ;? 0.
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Assume that the following property is true

and let us prove that h l h2k + 1 ~O and h2k+2~0.

where .r; = f( i/( 2k + I )).

Taking ./;) = ... = '/;k = 0 and Ilk + I = I, we obtain

Taking ./(~ = ... = I2k _1= '/;k + 1= 0 and '/;k ~ I' we obtain

333

Since, by induction, P2k(X) ~ 0 because B~k is a positive operator, we see
that P2k + 1(I) has the sign of PI (i.e., of hI) and consequently by the first
inequality, P2k + Iix) has also the sign of h I on [0, I]. As P1k + I (0) = 0, we
have P~k+I(0)=(2k+l)!h1k+l which implies hlh2k+I~0, q.e.d. In a
similar way, one deduces that h 2k + 2 ~ 0 from the positivity of the operator
B~k + l' From the invariance of the operators by changing h( /) into h( - /),
we can restrict property (P) to hi> 0 and hi::? 0 for all i ~ 2.

(2) The condition of Theorem I is also sufficient since

"
p,,(x)= I x

k
fJ"k(Jzl,2h 1,···,(n-k+l)!h"_k+I)'

k~1

where the fJllk are the exponential Bell polynomials (see e.g. Riordan [5],
chapters 4,5), therefore p,,(x) ~ 0 for x ~ 0 and B~; is a positive operator.
This can be deduced also from:

dk
.' dk

d .k exp(xh(t)) = [h(t)y exp(xh(t)) = L -:k PIl(X) /"jn!
.\ ,,~k d.\

For x = 0, we obtain [h( t)]k = L"3k dk/dxk p,,(O) ("/n! Since h has positive
coefficients, the derivatives of PIl at x = 0 are positive, hence Pn(x) ~ 0 for
x ~ 0, and finally B~I(x) ~ 0 if fix) ~ 0 for x E [0, I]. I
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In the rest of the paper, we assume that h satisfies the conditions of
Theorem I.

2.2. Proof (}j' Theorem 2. B;: eo(x) = lip" L~ ~ 0 (~) Pk(X) P"k(l - x) is
equal to co(:d= I, from (1.5) with y= I-x. Now, with g(l)=h'(t), we
have:

1 d " p,,+,(x)
g(t) exp(xh(l)) = - T exp(xh(t)) = L.. t"/nL

X({ "0;0 x

Therefore {s,,(x)=p,,+dx)lx} is the ShetTer sequence associated with g
and we deduce from ( 1.6)

or

(2.1 )

or

xp,,(I)= ±~ (kl1 ) pdx) P" dl- x )
k~() n

which is equivalent to B;:e, =e J •

Let us define the ShetTer sequences {q,,(x)) and {r,,(.,;,)} associated with
g, (I) = (h'(I))2 and g2(t) = h"( t) (we assume that hl/(O) = 2h 2 > 0). Then we
have

qn( 1) = k~O (:) qdx) P" k( 1-x)

rn(l) = k~O G) rdx) Pn k(l - x).

On the other hand, we obtain

(2.2)

d 2

-, exp(xh(t)) = (xhl/(t) + x 2(h'(t)) exp(xh(t)) = I P"+1(X) t"/n !.(2.3)
ili- no;O
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From (2.2) and (2.3), we deduce successively
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(2.4 )

1 " (n)xr,,(1)+x-q,,(I) = I k Pk+2(X)P" k(l-X)
k~O

" k(k-l) (11+2)
=k~O (n+l)(1/+2) k pk(x)p"+2_dl-x)

" k(k-l) (11)
=k~2 11(11-1) k p,.{x)Pnk(l-x).

Using (2.1 ), we obtain:

C2(X) = x 2 =
q"

1 '\' {k(k - I) k 1',,-2(1 l}(I1)
L.. - - --- k Pk(X) P,,-k( 1 - x).

2(1) k~1 11(11-1) 11 p,,(1) .
o (2.5)

For sake of simplicity, denote P" =P,,(1), q" = q,,( I), 1'" = 1',,( I), and
b"k(X) = (%) pdx) P"_k(l-X). With these notations, we obtain:

(2.6)

From (2.4) with x = 1, (2.1 ), (2.5) and (2.6), we deduce respectively:

Comparing these two identities gives

I qn- o (I 1'" 0)B'co-co=--- -+--- (c -eo)=a (el-e,)II _ .... I _ II _

P" 11 lJ" - 2

where

_I (lJ"-2 111',,_2)_1 (lJn 2+111'''02)(/,,-- --+-- --
n P" P" n q" 2+ rn-2

or

1 ( 1'''_0)
([,,=- 1+(n-I) ---.'

1/ P"
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More generally, we have:
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d k

-,k (exp(xh(t))) = L: PII+dx) t"/nl (2.7)
it II~O

where g,(t) is a product of derivatives of h(t).

Expanding gi(t) exp(xh(t))= L iXill(X) t"/I1!
Il~O

(2.9)

for i = 1, ... , k, we obtain k ShetTer sequences, therefore, by (1.6), (2.7), (2.8)
and (2.9), we get

II (1/)=L: i Pi+k(X) PII i( 1-x)
1=0

_ ". k i( i-I) .. : (i - k+ I) (1/ + k) _- I . Pi('\) PII+k
I ~ k 11( n - 1) ... (n - k + 1) I

i(l-x)

(lI+k)k p }/+k {" 1 lI~ki(i-I) ... (i-k+I)}
= k - L.. k k bll+k.i(X) .

n(n+I)"'(I/+ -I) PII+k i~k (11+-)

(2.10)

But since i( i-I) ... (i - k + I ) E iP'k [i], the sum between brackets is a
linear combination of the B}/+k(eJ= l/PII+k LJ:~t (i/(I1+k)V bll+k.i(X)
for I~j~k. If we assume that BII+keJEiP';for O~j~k-I, the above
expression shows that BII +k ek E iP'k for all 11 ?: 0, i.e., B:; preserves the degree
of polynomials, q.e.d. I

3. CONVERGENCE OF B::f TO f E C[ 0, 1]

In this section, we assume that h satisfies the conditions of Theorem 1,
i.e. B:: is a positive operator on qo, I], for all 11 ~ O. We want to prove
Theorem 3. For this, we need the following

LEMMA. Let h be an entire function, then the sequence {(n + I )rjPII + 2}
is bounded by k - I if and only if h E iP'k'
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Proof (1) Assumethath(t)=hl/+ ... +hklkElP'kwithhlandhk>O.
Then we compute:

11>0

,,(2h1 P,,_1 k(k-I)hkP" k+l)
1.. - + ... + I"

,,;,1 (n-I)! (n-k+I)!

(with the convention Pi = a for j < 0).

d ,,(2h1P k(k-1)hk-p k+1)- (/h"(t) exp(h(/))) = L. ---"+ '" + _ ,,- ~ (11+ 1 )1"
dt >-0 n! (n-k+2)!

,,~ . (3.1)

(
h!J 2h,P khk_!J k- )h'(1) exp(h(l)) = L _1_" + -" --I + ... + ,,- +1 ttl

,,;,0 II! (n-I)! (n-k+l)!

d ,,(hiP 1 2h,p kh,p k-+')-h'(t)exp(h(t))= L. _ ,,+ +---"+ ... + ",,- ~ (I1+I)t"
dt >-0 (11+1)! n! (l1-k+2)! .

,,~ . (3.2)

Comparing the brackets in (3.1) and (3.2) we obtain, for k ~ 2 and t ~ 0:

(3.3 )

But (3.1) is also equal to L,,;, 0 (n + I ) r" 1"/n1. Similarly, (3.2) is equal to
.L:,,;, () P" -+- 2 t"in! and (3.3) gives for all n ~ 0

(n + I )r" ~ (k - 1) P" + 2 (3.4 )

whence the result on the sequence {( 11 + I )r"ip" + 2}'
(2) Reciprocally, if (3.4) is true, then (3.3) is true for all I? O. A first

integration gives:

th"(1 )chit I ~ (k - 1Hh'( I)e 'lirl - hi)

~ (k - 1) h'(I)e"lli

whence

th"(t)~(k-I)h'(t)

or

th"(t) + h'(I) ~ kh'( I).
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A second integration gives th' (t) ~ kh( t) and a third one 0 ~ h( t) ~ h( I ) t k

for all t ~ O. By Rouche's theorem, this implies that hE !Pk'

Proof of Theorem 3. (i) is an immediate consequence of Korovkin's
theorem (see [3]): Since B;; is a positive operator and B::e;=e j for
i = 0, I, it suffices to have lim B:: e1 = e1 which is equivalent, in view of
Theorem 2( ii) to condition (i) of Theorem 3.

(ii) r" lip" = O( I/n) means that the sequence nr" liP" is bounded,
so from the lemma above, hE!Pk for some k ~ 1. Now, for all 6> 0 and
IE qo, 1], we have:

I f · f' I ( I It - x I) f' "'). (t) -. (x) ~ + -ij-'- we, u .

Let cp( t) = f( t) - f( x) and t/J(t) = It - x I: since B:: is a positive operator and
B;;Co = eo, IB:; cp(x)1 ~ (I + (1/6) B;; t/J(x)) w(f 6).

By Schwarz's inequality:

(B;;t/Jll ~ (B::eo)(B;;t/Jl) = B;;t/Jl

B;; ljJl(X) = B::(l'l - 2xe, + Xl) = a"x(1 -x) ~ !a"

from which we deduce, for x E [0, I]:

IB" f" f' -I (1 jail) j"", (.\)-.l.\) ~ + 26 w( ,b).

Taking 6 = I/fi and using the inequality na" ~ k (since hE !Pd, we obtain
the desired result. I

4. EXAMPLES OF GENERATING FUNCTIONS h

4.1. Functions h .flu' Which B;:I Does Not Converge to f For any a > 0,
consider the series

h(t) = -In ( I -~) = L
nt;?: I ilIa'"

Its radius of convergence is a. We compute successively:

a t"
exp(h(t))=-= I p" "

a-t ,,;;,0 n.
. n! 11"(t)= 1 ~with PI1=-' .

a" (a - t)"
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and
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a I"
h"(l) exp(h(t)) = .3 = L. r" "

(a - t) ,,;;'0 n.

Therefore

with
I (n+2)!

r ll =:2 a" + 2 .

This shown that there exist functions h, with an arbitrary large radius of
convergence, which do not satisfy condition (i) of Theorem 3, i.e. for which
B::J does not converge to f when J1 tends to infinity. Here, for example,
B;: e2 converges to ~(e 1 + e2)'

4.2. Funclions h ./iJr Which B;:f Converge 10 f (a) h has a finite
radius of COJ1vergence. Consider

I
h(l)=-= L. tm

,
1- t

11J??!

then it is known (see e.g. Riordan [5], p. 194 or Comtet [ 1], vol. 1, p. 165)
that

( " n' (11-1)) t"
exp(h(t)) = 1+,II k~1 k; k- 1 11!'

Since,

2
h"(l) = 1 l'( - t)

we also get

h"(l) exp(h(l)) = 2 1 exp (~t_) = I 2L:,21( -I )1"
(1-t) 1-t ,,;;,0

where

II (11 +X) (_X)k
V"I(X)= I --
". k~O k+x k!

are the generalized Laguerre polynomials. Finally, we obtain

{

"11 f (11 - 1) dP = I --.:. =-(n-ll'-L!°)(-1)=(n-I)!L 111 (-I)
" k~1 k! k-l . dx " ,,·~I

r
l1

= 211! L;,2)( -1)
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and

1'1/ 1 L :,2 1( - I )
-
2P"t2 n+l L~i~l(-I)'

By using recurrence relationships between Laguerre polynomials, it is
possible to prove that this quantity behaves like l/jn + I (Paszkowski
[7], 1990, see also Szego [8], Chapter XII), so we get

lim ~=o.
11_ +'1_ PIJ+l

This is an example of series h(!), with a finite radius of convergence
R = I, satisfying condition (i) of Theorem 3.

(b) h is an entire fUl1ctio!l. Consider

m!'
m;?: I

t l11

h(t) = e' -1 = L

then

I"
exp(h(t)) = I (ii(n)-r'

11;:::0 n.

"
where (v(n) = I .1'(11, k)

k~J

is the sum of the Stirling numbers of the second kind (see e.g. Comtet [1 ],
vol. 2, p. 45),

(
1/ (n) ) t"h"(t) exp(h(t)) = I L . (v(j) -,'

1/;:,0 j~O J n.

Since

1/ (11)I . (v(j)=(v(n+I),
j~O J

we get

'n (v(n + I)

P"t2 (v(n + 2)

In Comtet ([ 1], p. 144, exercise 23), we find:

W(I1)- (XI/+ 1) 1/2 exp{n(x,,+x,; '-1) -I}
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where x" is the unique root of xc' = II. Then, in De Bruijn ([ 2], p. 25), we
find

x" -log II when II ~ +00,

therefore, we obtain (v( 11)- 11"/~ and

(0(11) 1 (11 )"
(o( II + 1) "'- II + 1 11 + 1

tends to zero when II tends to infinity.
This example shows that there exist entire functions h, which are not

polynomials. for which B;; converges to f
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